Dr Mingyuan Lu
Researcher biography
Dr. Mingyuan Lu was awarded her PhD from The University of Queensland in Febuary 2014. She has previously completed a Masters of Engineering (June 2009, Materials Science and Engineering, Central South University, China), and a Bachelor of Engineering (June 2007, Materials Science and Engineering, Central south University, China).
Mingyuan has more than 10 years' experience in research, and during this period she has gained extensive experience with material synthesis, mechanical mechanics, and material characterization including nanoindentation, nanoscratching, atomic force microscopy, electron microscopy, and focused ion beam milling (FIB); additionally,she has experience with structural and compositional analysis techniques (Raman, XRD, EDS, DTA, DSC etc.).
Mingyuan's contributions to the field of mechanical and materials engineering are listed below:
Materials mechanics
- (2015-2016) developed a new and successful FIB-machined micro-cantilever bending technique to study the fracture and interfacial properties of the protective intermetallic coatings on magnesium alloys: this technique can be applied to a wide range of materials, sub-surface structures and multilayered structures. Based on this methodology, they later developed a micro-bridge four-point bending technique. This approach can generate a "stable" interfacial delamination, and thus enables quantitative analysis of interfacial toughness.
- (2011-2014) developed an indentation-based methodology for assessing the interfacial adhesion of bilayer structures, in a joint project that was funded by WIN Semiconductor Co., Taiwan: the methodology developed has been used to test the reliability of SiN-passivated GaAs semiconductor wafer products.
Materials synthesis and processing
- (2015-current) developing a selective laser sintering process for the additive manufacturing of porous and biodegradable scaffolds, made from a biopolymer, for bone tissue engineering: this innovative process can produce scaffolds without the use of an artificial 3D model, and the scaffold has a unique interconnected pore architecture and large surface area making it suitable for bone tissue regeneration applications. The promising outcomes of the preliminary study have elicited strong support from UQ; it has received two generous internal grants (a philanthropic grant for an ECR in the field of engineering, and SEED funding) to enable further study in this field. The scaffolds will shortly be tested in a pre-clinical mouse model (funded by SEEM grant) to study biocompatibility and osteoconductivity.
- (2007-2009) developed high-performance refractory metallic materials using powder metallurgy processes: in this project, they discovered the effect of trace TiC, ZrC Carbide nanoparticles on the mechanical properties, sintering behaviour and microstructure of molybdenum alloys.